Show simple item record

dc.creatorSwartz, Charleses
dc.date2017-04-18
dc.date.accessioned2025-10-06T15:05:07Z
dc.date.available2025-10-06T15:05:07Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1440
dc.identifier10.4067/S0716-09172007000100002
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255550
dc.descriptionIf λ is a sequence K-space and Σ xj is a series in a topological vector space X, the series is said to be λ-multiplier convergent if the series converges in X for every t = {tj} ∈ λ. We show that if λ satisfies a gliding hump condition, called the signed strong gliding hump condition, then the series converge uniformly for t = {tj} belonging to bounded subsets of λ. A similar uniform convergence result is established for a multiplier convergent series version of the Hahn-Schur Theorem.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1440/1224
dc.rightsCopyright (c) 2007 Proyecciones. Journal of Mathematicsen
dc.sourceProyecciones (Antofagasta); Vol. 26 No. 1 (2007); 27-35en
dc.sourceProyecciones. Revista de Matemática; Vol. 26 Núm. 1 (2007); 27-35es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2007
dc.titleUniform convergence of multiplier convergent serieses
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record