Show simple item record

dc.creatorPrzytycki, Felikses
dc.date2017-04-20
dc.date.accessioned2025-10-06T15:05:07Z
dc.date.available2025-10-06T15:05:07Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1461
dc.identifier10.4067/S0716-09172005000300006
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255559
dc.descriptionWe prove that for f : a rational mapping of the Riemann sphere of degree at least 2 and Ω a simply connected immediate basin of attraction to an attracting fixed point, if |(f n)'(p)| ≥ Cn3+ξ for constants ξ > 0,C > 0 all positive integers n and all repelling periodic points p of period n in Julia set for f, then a Riemann mapping R : extends continuously to and FrΩ is locally connected. This improves a result proved by J. Rivera-Letelier for Ω the basin of infinity for polynomials, and 5 + ξ rather than 3 + ξ.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1461/1242
dc.rightsCopyright (c) 2005 Proyecciones. Journal of Mathematicsen
dc.sourceProyecciones (Antofagasta); Vol. 24 No. 3 (2005); 277-286en
dc.sourceProyecciones. Revista de Matemática; Vol. 24 Núm. 3 (2005); 277-286es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2005
dc.titleAn improvement of j. Rivera-letelier result on weak hyperbolicity on periodic orbits for polynomialses
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record