Show simple item record

dc.creatorLi, Shu-Pinges
dc.date2017-04-20
dc.date.accessioned2025-10-06T15:05:08Z
dc.date.available2025-10-06T15:05:08Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1470
dc.identifier10.4067/S0716-09172005000100001
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255568
dc.descriptionIn this paper, a new notion of sequential compactness is introduced in L-topological spaces, which is called sequentially S?-compactness. If L = [0, 1], sequential ultra-compactness, sequential N-compactness and sequential strong compactness imply sequential S?-compactness, and sequential S?-compactness implies sequential F-compactness. The intersection of a sequentially S?-compact L-set and a closed L-set is sequentially S?-compact. The continuous image of an sequentially S?- compact L-set is sequentially S?-compact. A weakly induced L-space (X, T ) is sequentially S?-compact if and only if (X, [T ]) is sequential compact. The countable product of sequential S?-compact L-sets is sequentially S?-compact.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1470/1251
dc.rightsCopyright (c) 2005 Proyecciones. Journal of Mathematicsen
dc.sourceProyecciones (Antofagasta); Vol. 24 No. 1 (2005); 1-11en
dc.sourceProyecciones. Revista de Matemática; Vol. 24 Núm. 1 (2005); 1-11es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2005
dc.titleSequential S?-compactness in L-topological spaceses
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record