| dc.creator | Li, Shu-Ping | es |
| dc.date | 2017-04-20 | |
| dc.date.accessioned | 2025-10-06T15:05:08Z | |
| dc.date.available | 2025-10-06T15:05:08Z | |
| dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1470 | |
| dc.identifier | 10.4067/S0716-09172005000100001 | |
| dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/255568 | |
| dc.description | In this paper, a new notion of sequential compactness is introduced in L-topological spaces, which is called sequentially S?-compactness. If L = [0, 1], sequential ultra-compactness, sequential N-compactness and sequential strong compactness imply sequential S?-compactness, and sequential S?-compactness implies sequential F-compactness. The intersection of a sequentially S?-compact L-set and a closed L-set is sequentially S?-compact. The continuous image of an sequentially S?- compact L-set is sequentially S?-compact. A weakly induced L-space (X, T ) is sequentially S?-compact if and only if (X, [T ]) is sequential compact. The countable product of sequential S?-compact L-sets is sequentially S?-compact. | es |
| dc.format | application/pdf | |
| dc.language | spa | |
| dc.publisher | Universidad Católica del Norte. | en |
| dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1470/1251 | |
| dc.rights | Copyright (c) 2005 Proyecciones. Journal of Mathematics | en |
| dc.source | Proyecciones (Antofagasta); Vol. 24 No. 1 (2005); 1-11 | en |
| dc.source | Proyecciones. Revista de Matemática; Vol. 24 Núm. 1 (2005); 1-11 | es |
| dc.source | 0717-6279 | |
| dc.source | 10.22199/issn.0717-6279-2005 | |
| dc.title | Sequential S?-compactness in L-topological spaces | es |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |