Show simple item record

dc.creatorSoto Montero, Ricardo Lorenzoes
dc.date2017-04-20
dc.date.accessioned2025-10-06T15:05:08Z
dc.date.available2025-10-06T15:05:08Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1477
dc.identifier10.4067/S0716-09172005000100006
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255573
dc.descriptionLet ? = {?1, ?2,...,?n} be a set of complex numbers. The nonnegative inverse eigenvalue problem (NIEP) is the problem of determining necessary and sufficient conditions in order that ? may be the spectrum of an entrywise nonnegative n × n matrix. If there exists a nonnegative matrix A with spectrum ? we say that ? is realized by A. If the matrix A must be symmetric we have the symmetric nonnegative inverse eigenvalue problem (SNIEP). This paper presents a simple realizability criterion by symmetric nonnegative matrices. The proof is constructive in the sense that one can explicitly construct symmetric nonnegative matrices realizing ?.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1477/1256
dc.rightsCopyright (c) 2005 Proyecciones. Journal of Mathematicsen
dc.sourceProyecciones (Antofagasta); Vol. 24 No. 1 (2005); 65-78en
dc.sourceProyecciones. Revista de Matemática; Vol. 24 Núm. 1 (2005); 65-78es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2005
dc.titleRealizability by symmetric nonnegative matriceses
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record