Show simple item record

dc.creatorVidal, Claudioes
dc.creatorGómez, Pedroes
dc.date2017-04-24
dc.date.accessioned2025-10-06T15:05:08Z
dc.date.available2025-10-06T15:05:08Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1479
dc.identifier10.4067/S0716-09172003000300001
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255575
dc.descriptionOur purpose in this paper is to understand the geometry of the Poincaré compactification and to apply this technique to prove that there exists a Poincaré compactification of vector fields defined by rational functions and of vector field that are the quotient of some power of polynomial. We will give also a global expressions for the Poincaré vector field associated. Furthermore, we summarize these results proving that there exist a Poincaré vector field for any vector field whose rate of growth at infinity of each component is not bigger than a polynomial growth.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1479/1258
dc.rightsCopyright (c) 2003 Proyecciones. Journal of Mathematicsen
dc.sourceProyecciones (Antofagasta); Vol. 22 No. 3 (2003); 161-180en
dc.sourceProyecciones. Revista de Matemática; Vol. 22 Núm. 3 (2003); 161-180es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2003
dc.titleAn extension of the poincaré compactification and a geometric interpretationes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record