Show simple item record

dc.creatorHidalgo, Rubén A.es
dc.date2017-04-24
dc.date.accessioned2025-10-06T15:05:08Z
dc.date.available2025-10-06T15:05:08Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1486
dc.identifier10.4067/S0716-09172003000200002
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255582
dc.descriptionWe show that a non-elementary finitely generated torsion-free function group is uniquely determined by its commutator subgroup. In this way, we obtain a generalization of the results obtained in [2], [3] and [8]. This is well related to Torelli’s theorem for closed Riemann surfaces. For a general non-elementary torsion-free Kleinian group the above rigidity property still unknown.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1486/1265
dc.rightsCopyright (c) 2003 Proyecciones. Journal of Mathematicsen
dc.sourceProyecciones (Antofagasta); Vol. 22 No. 2 (2003); 117-125en
dc.sourceProyecciones. Revista de Matemática; Vol. 22 Núm. 2 (2003); 117-125es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2003
dc.titleA commutator rigidity for function groups and Torelli’s theoremes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record