Show simple item record

dc.creatorMiranda, Héctores
dc.date2017-04-24
dc.date.accessioned2025-10-06T15:05:08Z
dc.date.available2025-10-06T15:05:08Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1487
dc.identifier10.4067/S0716-09172003000200003
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255583
dc.descriptionThere are well known inequalities for Hermitian matrices A and B that relate the diagonal entries of A+B to the eigenvalues of A and B. These inequalities are easily extended to more general inequalities in the case where the matrices A and B are perturbed through congruences of the form UAU? + V BV ? , where U and V are arbitrary unitary matrices, or to sums of more than two matrices. The extremal cases where these inequalities and some generalizations become equalities are examined here.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1487/1266
dc.rightsCopyright (c) 2003 Proyecciones. Journal of Mathematicsen
dc.sourceProyecciones (Antofagasta); Vol. 22 No. 2 (2003); 127-134en
dc.sourceProyecciones. Revista de Matemática; Vol. 22 Núm. 2 (2003); 127-134es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2003
dc.titleDiagonals and eigenvalues of sums of hermitian matrices. Extreme caseses
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record