Show simple item record

dc.creatorOer, Z.es
dc.date2017-04-24
dc.date.accessioned2025-10-06T15:05:17Z
dc.date.available2025-10-06T15:05:17Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1506
dc.identifier10.4067/S0716-09172001000200003
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255601
dc.descriptionLet H be a separable Hilbert Space. Denote by H1 = L2(a,b; H) the set of function defned on the interval a < c < b (¾¥ a < c < b £ ¥)whose values belong to H strongly measurable [12] and satisfying the conditionZ b a ||f(x)||2 Hdx < ? If the inner product of function ¦(c) and g(c) belonging to H1 is defined by (f, g)1 = Z b a (f(x), g(x))Hdx then H1 forms a separable Hilbert space. We study separation problem for the operator formed by ¾ y"+ Q (c) y Sturm-Liouville differential expression in L2(¾ ¥, ¥; H) space has been proved where Q (c) in an operator which transforms at H in value of c,,self-adjoint, lower bounded and its inverse is complete continous.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1506/1284
dc.rightsCopyright (c) 2001 Proyecciones. Journal of Mathematicsen
dc.sourceProyecciones (Antofagasta); Vol. 20 No. 2 (2001); 177-191en
dc.sourceProyecciones. Revista de Matemática; Vol. 20 Núm. 2 (2001); 177-191es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2001
dc.titleSeparation problem for sturm-liouville equation with operator coefficientes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record