Show simple item record

dc.creatorSanthakumaran, A. P.
dc.creatorTitus, P.
dc.creatorGanesamoorthy, K.
dc.creatorBalakrishnan, P.
dc.date2013-06-24
dc.identifierhttp://www.revistaproyecciones.cl/article/view/1125
dc.identifier10.4067/S0716-09172013000200007
dc.descriptionFor a connected graph G of order at least two, an edge detour monophonic set of G is a set S of vertices such that every edge of G lies on a detour monophonic path joining some pair of vertices in S. The edge detour monophonic number of G is the minimum cardinality of its edge detour monophonic sets and is denoted by edm(G) .We determine bounds for it and characterize graphs which realize these bounds. Also, certain general properties satisfied by an edge detour monophonic set are studied. It is shown that for positive integers a, b and c with 2 < a < b < c, there exists a connected graph G such that m(G) = a, m!(G) = b and edm(G) = c,where m(G) is the monophonic number and m! (G) is the edge monophonic number of G. Also, for any integers a and b with 2 < a < b, there exists a connected graph G such that dm(G) = a and edm(G)= b,where dm(G) is the detour monophonic number of a graph G.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttp://www.revistaproyecciones.cl/article/view/1125/1165
dc.rightsDerechos de autor 2013 Proyecciones. Journal of Mathematicses-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 32 No 2 (2013); 183-198en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 32 Núm. 2 (2013); 183-198es-ES
dc.source0717-6279
dc.source0716-0917
dc.titleEdge Detour Monophonic Number of a Graphes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record