Show simple item record

dc.creatorLicurgo, Edson Carlos
dc.creatorSan Martín, Luiz A. B.
dc.date2011-12-10
dc.identifierhttp://www.revistaproyecciones.cl/article/view/1178
dc.identifier10.4067/S0716-09172011000200008
dc.descriptionLet (g, [•, •]) be a Lie algebra with an integrable complex structure J. The ±i eigenspaces of J are complex subalgebras of gC isomorphic to the algebra (g, [*]J) with bracket [X * Y]J = 2 ([X, Y] - [JX, JY]). We consider here the case where these subalgebras are nilpotent and prove that the original (g, [•, •]) Lie algebra must be solvable. We consider also the 6-dimensional case and determine explicitly the possible nilpotent Lie algebras (g, [*]J). Finally we produce several examples illustrating different situations, in particular we show that for each given s there exists g with complex structure J such that (g, [*]J) is s-step nilpotent. Similar examples of hypercomplex structures are also built.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttp://www.revistaproyecciones.cl/article/view/1178/1108
dc.rightsDerechos de autor 2011 Proyecciones. Journal of Mathematicses-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 30 No 2 (2011); 247-263en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 30 Núm. 2 (2011); 247-263es-ES
dc.source0717-6279
dc.source0716-0917
dc.titleLie algebras with complex structures having nilpotent eigenspaceses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record