Cycle connectivity in weighted graphs
Author
Mathew, Sunil
Sunitha, M. S.
Abstract
Some new connectivity concepts in weighted graphs are introduced in this article. The concepts of strong arc, partial cutnode, bridge and block are introduced. Also three different types of cycles namely locamin cycle, multimin cycle and strongest strong cycle are introduced. Partial blocks in weighted graphs are characterized using strongest paths. Also a set of necessary conditions for a weighted graph to be a partial block involving strong cycles and a sufficient condition for a weighted graph to be a partial block involving strongest strong cycles are obtained. A new connectivity parameter called cycle connectivity and a new type of weighted graphs called θ - weighted graphs are introduced and partial blocks in θ - weighted graphs are fully characterized.