Show simple item record

dc.creatorJeyanthi, P.
dc.creatorSudha, A.
dc.date2017-03-23
dc.identifierhttp://www.revistaproyecciones.cl/article/view/1217
dc.identifier10.4067/S0716-09172016000300003
dc.descriptionAn edge irregular total k-labeling f : V ∪ E → {1, 2, 3,...,k} of a graph G = (V, E) is a labeling of vertices and edges of G in such a way thatfor any two different edges uv and u'v' their weights f (u) + f (uv) + f (v) and f (u') + f (u'v') + f (v') are distinct. The total edge irregularity strength tes(G) is defined as the minimum k for which the graph G has an edge irregular total k-labeling. In this paper, we determine the total edge irregularity strength of disjoint union of p isomorphic double wheel graphs and disjoint union of p consecutive non-isomorphic double wheel graphs.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttp://www.revistaproyecciones.cl/article/view/1217/930
dc.rightsDerechos de autor 2016 Proyecciones. Journal of Mathematicses-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 35 No 3 (2016); 251-262en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 35 Núm. 3 (2016); 251-262es-ES
dc.source0717-6279
dc.source0716-0917
dc.titleTotal edge irregularity strength of disjoint union of double wheel graphses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record