dc.creator | Jeyanthi, P. | |
dc.creator | Sudha, A. | |
dc.date | 2017-03-23 | |
dc.identifier | http://www.revistaproyecciones.cl/article/view/1217 | |
dc.identifier | 10.4067/S0716-09172016000300003 | |
dc.description | An edge irregular total k-labeling f : V ∪ E → {1, 2, 3,...,k} of a graph G = (V, E) is a labeling of vertices and edges of G in such a way thatfor any two different edges uv and u'v' their weights f (u) + f (uv) + f (v) and f (u') + f (u'v') + f (v') are distinct. The total edge irregularity strength tes(G) is defined as the minimum k for which the graph G has an edge irregular total k-labeling. In this paper, we determine the total edge irregularity strength of disjoint union of p isomorphic double wheel graphs and disjoint union of p consecutive non-isomorphic double wheel graphs. | es-ES |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Universidad Católica del Norte. | es-ES |
dc.relation | http://www.revistaproyecciones.cl/article/view/1217/930 | |
dc.rights | Derechos de autor 2016 Proyecciones. Journal of Mathematics | es-ES |
dc.source | Proyecciones. Journal of Mathematics; Vol 35 No 3 (2016); 251-262 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 35 Núm. 3 (2016); 251-262 | es-ES |
dc.source | 0717-6279 | |
dc.source | 0716-0917 | |
dc.title | Total edge irregularity strength of disjoint union of double wheel graphs | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Artículo revisado por pares | es-ES |