dc.creator | Jeyanthi, P. | |
dc.creator | Maheswari, A. | |
dc.creator | Pandiaraj, P. | |
dc.date | 2017-03-23 | |
dc.identifier | http://www.revistaproyecciones.cl/article/view/1219 | |
dc.identifier | 10.4067/S0716-09172016000300005 | |
dc.description | A graph G is said to be one modulo three mean graph if there is an injective function φ from the vertex set of G to the set {a|0 ≤ a ≤ 3q— 2 and either a ≡ 0(mod 3) or a ≡ 1(mod 3)} where q is the number of edges G and φ induces a bijection φ* from the edge set of G to {a|1 ≤ a ≤ 3q — 2 and either a ≡ 1(mod 3)} given byand the function φ is called one modulo three mean labeling of G. In this paper, we prove that the graphs T ° Kn, T ô K1,n, T ô Pn and T ô 2Pn are one modulo three mean graphs. | es-ES |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Universidad Católica del Norte. | es-ES |
dc.relation | http://www.revistaproyecciones.cl/article/view/1219/932 | |
dc.rights | Derechos de autor 2016 Proyecciones. Journal of Mathematics | es-ES |
dc.source | Proyecciones. Journal of Mathematics; Vol 35 No 3 (2016); 277-289 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 35 Núm. 3 (2016); 277-289 | es-ES |
dc.source | 0717-6279 | |
dc.source | 0716-0917 | |
dc.title | One modulo three mean labeling of transformed trees | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Artículo revisado por pares | es-ES |