Show simple item record

dc.creatorYang, Gui-Qin
dc.date2017-04-20
dc.identifierhttp://www.revistaproyecciones.cl/article/view/1462
dc.identifier10.4067/S0716-09172005000300007
dc.descriptionIn this paper, the notions of countable S∗-compactness is introduced in L-topological spaces based on the notion of S∗-compactness. An S∗-compact L-set is countably S∗-compact. If L = [0, 1], then countable strong compactness implies countable S∗-compactness and countable S∗-compactness implies countable F-compactness, but each inverse is not true. The intersection of a countably S∗-compact L-set and a closed L-set is countably S∗-compact. The continuous image of a countably S∗-compact L-set is countably S∗-compact. A weakly induced L-space (X, T ) is countably S∗-compact if and only if (X, [T ]) is countably compact.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttp://www.revistaproyecciones.cl/article/view/1462/1243
dc.rightsDerechos de autor 2005 Proyecciones. Journal of Mathematicses-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 24 No 3 (2005); 287-294en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 24 Núm. 3 (2005); 287-294es-ES
dc.source0717-6279
dc.source0716-0917
dc.titleCountable s*-compactness in L-spaceses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record