dc.creator | Yang, Gui-Qin | |
dc.date | 2017-04-20 | |
dc.identifier | http://www.revistaproyecciones.cl/article/view/1462 | |
dc.identifier | 10.4067/S0716-09172005000300007 | |
dc.description | In this paper, the notions of countable S∗-compactness is introduced in L-topological spaces based on the notion of S∗-compactness. An S∗-compact L-set is countably S∗-compact. If L = [0, 1], then countable strong compactness implies countable S∗-compactness and countable S∗-compactness implies countable F-compactness, but each inverse is not true. The intersection of a countably S∗-compact L-set and a closed L-set is countably S∗-compact. The continuous image of a countably S∗-compact L-set is countably S∗-compact. A weakly induced L-space (X, T ) is countably S∗-compact if and only if (X, [T ]) is countably compact. | es-ES |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Universidad Católica del Norte. | es-ES |
dc.relation | http://www.revistaproyecciones.cl/article/view/1462/1243 | |
dc.rights | Derechos de autor 2005 Proyecciones. Journal of Mathematics | es-ES |
dc.source | Proyecciones. Journal of Mathematics; Vol 24 No 3 (2005); 287-294 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 24 Núm. 3 (2005); 287-294 | es-ES |
dc.source | 0717-6279 | |
dc.source | 0716-0917 | |
dc.title | Countable s*-compactness in L-spaces | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Artículo revisado por pares | es-ES |