Show simple item record

dc.creatorHidalgo, Rubén A.
dc.date2017-04-24
dc.identifierhttp://www.revistaproyecciones.cl/article/view/1503
dc.identifier10.4067/S0716-09172001000300007
dc.descriptionIn this note we consider hyperelliptic-M-symmetric Riemann surfaces, that is, hyperelliptic Riemann surfaces with a symmetry with maximal number of components of fixed points. These surfaces can be represented either by real algebraic curves or by real Schottky groups. To obtain one of these in terms of the other is difficult. In this note we proceed to describe explicit transcendental relations between the different sets of parameters these representations give. This can be used to obtain a computer program which permits obtain numerical approximations of the algebraic curve in terms of real Schottky group and viceversa.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttp://www.revistaproyecciones.cl/article/view/1503/1281
dc.rightsDerechos de autor 2001 Proyecciones. Journal of Mathematicses-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 20 No 3 (2001); 351-365en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 20 Núm. 3 (2001); 351-365es-ES
dc.source0717-6279
dc.source0716-0917
dc.titleNumerical uniformization of hyperelliptic-m-symmetric riemann surfaceses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record