Show simple item record

dc.creatorHidalgo, Rubén A.
dc.date2017-04-24
dc.identifierhttp://www.revistaproyecciones.cl/article/view/1505
dc.identifier10.4067/S0716-09172001000200002
dc.descriptionIn this note we consider a class of groups of conformal automorphisms of closed Riemann surfaces containing those which can be lifted to some Schottky uniformization. These groups are those which satisfy a necessary condition for the Schottky lifting property. We find that all these groups have upper bound 12(g − 1), where g ≥ 2 is the genus of the surface. We also describe a sequence of infinite genera g1 < g2 < · · · for which these upper bound is attained. Also lower bounds are found, for instance, (i) 4(g+1) for even genus and 8(g−1) for odd genus. Also, for cyclic groups in such a family sharp upper bounds are given.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttp://www.revistaproyecciones.cl/article/view/1505/1283
dc.rightsDerechos de autor 2001 Proyecciones. Journal of Mathematicses-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 20 No 2 (2001); 139-175en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 20 Núm. 2 (2001); 139-175es-ES
dc.source0717-6279
dc.source0716-0917
dc.titleBounds for conformal automorphisms of riemann surfaces with condition (A)es-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record