Show simple item record

dc.creatorBascanbaz-Tunca, Gülen
dc.date2017-05-08
dc.identifierhttp://www.revistaproyecciones.cl/article/view/1550
dc.identifier10.4067/S0716-09172006000100005
dc.descriptionIn this paper we consider the Schrödinger operator L generated inL²(R₊) byy''+q(x)y= µy, x∈R₊:= [0, ∞)subject to the boundary conditiony'(0)-hy(0)=0,where q is a complex valued function summable in [0, ∞ and h≠0 is a complex constant, µ is a complex parameter. We have assumed thatholds which is the minimal condition that the eigenvalues and the spectral singularities of the operator L are finite with finite multiplicities. Under this condition we have given the spectral expansion formula for the operator L using an integral representation for the Weyl function of L. Moreover we also have investigated the convergence of the spectral expansion.es-ES
dc.languageen
dc.publisherUniversidad Católica del Norte.es-ES
dc.rightsDerechos de autor 2006 Proyecciones. Journal of Mathematicses-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 25 No 1 (2006); 63-78en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 25 Núm. 1 (2006); 63-78es-ES
dc.source0717-6279
dc.source0716-0917
dc.titleA spectral expansion for Schrödinger operatores-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record