Show simple item record

dc.creatorDjebali, Smaïl
dc.creatorSaifi, Ouiza
dc.date2014-03-01
dc.identifierhttps://revistas.ufro.cl/ojs/index.php/cubo/article/view/1292
dc.identifier10.4067/S0719-06462014000100010
dc.descriptionIn this paper, we investigate the existence of positive solution for a class of singular third-order boundary value problem associated with a φ-Laplacian operator and posed on the positive half-line:                                                                 where µ ≥ 0. By using the upper and lower solution approach and the fixed point theory, the existence of positive solutions is proved under a monotonic condition on f. The nonlinearity f may be singular at x = 0. An example of application is included to illustrate the main existence result.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttps://revistas.ufro.cl/ojs/index.php/cubo/article/view/1292/1144
dc.sourceCUBO, A Mathematical Journal; Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal; 105–116en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 16 Núm. 1 (2014): CUBO, A Mathematical Journal; 105–116es-ES
dc.source0719-0646
dc.source0716-7776
dc.subjectThird orderen-US
dc.subjecthalf-lineen-US
dc.subjectφ−Laplacianen-US
dc.subjectsingular problemen-US
dc.subjectpositive solutionen-US
dc.subjectfixed pointen-US
dc.subjectupper and lower solutionen-US
dc.titleUpper and lower solutions for φ−Laplacian third-order BVPs on the half-Lineen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record