Show simple item record

dc.creatorLuna, M. E.
dc.creatorShapiro, M.
dc.creatorStruppa, D. C.
dc.creatorVajiac, A.
dc.date2012-06-01
dc.identifierhttps://revistas.ufro.cl/ojs/index.php/cubo/article/view/1342
dc.identifier10.4067/S0719-06462012000200004
dc.descriptionIn this paper we introduce the algebra of bicomplex numbers as a generalization of the field of complex numbers. We describe how to define elementary functions in such an algebra (polynomials, exponential functions, and trigonometric functions) as well as their inverse functions (roots, logarithms, inverse trigonometric functions). Our goal is to show that a function theory on bicomplex numbers is, in some sense, a better generalization of the theory of holomorphic functions of one variable, than the classical theory of holomorphic functions in two complex variables.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttps://revistas.ufro.cl/ojs/index.php/cubo/article/view/1342/1196
dc.sourceCUBO, A Mathematical Journal; Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal; 61–80en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 14 Núm. 2 (2012): CUBO, A Mathematical Journal; 61–80es-ES
dc.source0719-0646
dc.source0716-7776
dc.subjectBicomplex numbersen-US
dc.subjectElementary functionsen-US
dc.titleBicomplex Numbers and their Elementary Functionsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record