• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Instituto de Investigaciones Agropecuarias
  • Chilean Journal of Agricultural Research
  • View Item
  •   Home
  • Instituto de Investigaciones Agropecuarias
  • Chilean Journal of Agricultural Research
  • View Item

Effect of chemical fertilization and green manure on the abundance and community structure of ammonia oxidizers in a paddy soil

Author
Fang,Yu

Yan,Zhi-Lei

Chen,Ji-Chen

Wang,Fei

Wang,Ming-Kuang

Lin,Xin-Jian

Full text
https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-58392015000500015
Abstract
Ammonia oxidization is a critical step in the soil N cycle and can be affected by the fertilization regimes. Chinese milk-vetch (Astragalus sinicus L., MV) is a major green manure of rice (Oryza sativa L.) fields in southern China, which is recommended as an important agronomic practice to improve soil fertility. Soil chemical properties, abundance and community structures of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in a MV-rice rotation field under different fertilization regimes were investigated. The field experiment included six treatments: control, without MV and chemical fertilizer (CK); 100% chemical fertilizer (NPK); 18 000 kg MV ha-1 plus 100% chemical fertilizer (NPKM1); 18 000 kg MV ha-1 plus 40% chemical fertilizer (NPKM2); 18 000 kg MV ha-1 alone (MV); and 18 000 kg MV ha-1 plus 40% chemical fertilizer plus straw (NPKMS). Results showed that NPKMS treatment could improve the soil fertility greatly although the application of 60% chemical fertilizer. The abundance of AOB only in the MV treatment had significant difference with the control; AOA were more abundant than AOB in all corresponding treatments. The NPKMS treatment had the highest AOA abundance (1.19 x 10(8) amoA gene copies g-1) and the lowest abundance was recorded in the CK treatment (3.21 x 10(7) amoA gene copies g-1). The abundance of AOA was significantly positively related to total N, available N, NH4+-N, and NO3--N. The community structure of AOA exhibited little variation among different fertilization regimes, whereas the community structure of AOB was highly responsive. Phylogenetic analysis showed that all AOB sequences were affiliated with Nitrosospira or Nitrosomonas and all AOA denaturing gradient gel electrophoresis (DGGE) bands belonged to the soil and sediment lineage. These findings could be fundamental to improve our understanding of AOB and AOA in the N cycle in the paddy soil.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB