Show simple item record

dc.creatorInostroza,Luis
dc.creatorLobos,Iris
dc.creatorAcuña,Hernán
dc.creatorVásquez,Catalina
dc.creatorTapia,Gerardo
dc.creatorMonzón,Gerson
dc.date2017-09-01
dc.date.accessioned2019-04-24T21:20:28Z
dc.date.available2019-04-24T21:20:28Z
dc.identifierhttps://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-58392017000300218
dc.identifier.urihttp://revistaschilenas.uchile.cl/handle/2250/56297
dc.descriptionABSTRACT In temperate climates, cold stress constrains productivity of white clover (Trifolium repens L.), the most important perennial forage legume in intensive grazing systems for ruminants. Metabolism of water sugar carbohydrate (WSC) has been proposed as an important trait conferring cold tolerance to white clover. Conventional methodologies for WSC determination are considered high-cost and time-consuming. Near-infrared (NIR) spectroscopy is a robust, reliable, and high-throughput methodology to estimate chemical composition of forage species. The objectives of this work were to determine the accuracy of NIR spectroscopy for predicting WSC in stolon samples of white clover, and to evaluate the genetic relationship between WSC and cold tolerance. A white clover association mapping (WCAM) population was stablished in three location that represent a winter low temperature gradient associated with altitude. Dry matter production and some morphological traits were evaluated during three growing seasons. Samples for WSC determination were collected three time during a winter period. Samples were scanned with a NIR system, and a prediction model for WSC was fitted using partial least squares (PLS) regression. The adjusted prediction model achieved suitable predictive ability (R2 > 0.85). The WSC per se did not show significant genetic relationship with morphological and agronomically important traits. However, the WSC degradation rate (WSCdr) across the winter period showed significant genetic correlation with DM production during spring (rg = 0.64), which is the result of genetic/physiological mechanism expressed during the cold period. The NIR spectroscopy is a reliable and high-throughput methodology to predict WSC in stolon samples of white clover. The metabolism of WSC, evaluated as WSCdr, is involved in the cold tolerance of the WCAM population. The methodology implemented in this work is suitable to be applied in a plant breeding program routine.
dc.formattext/html
dc.languageen
dc.publisherInstituto de Investigaciones Agropecuarias, INIA
dc.relation10.4067/S0718-58392017000300218
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceChilean journal of agricultural research v.77 n.3 2017
dc.subjectBroad sense heritability
dc.subjectgenetic correlation
dc.subjecthigh-throughput phenotyping
dc.subjectPLS regression Trifolium repens.
dc.titleNIR-Prediction of water-soluble carbohydrate in white clover and its genetic relationship with cold tolerance


This item appears in the following Collection(s)

Show simple item record