Show simple item record

dc.creatorWang,Hengzhi
dc.creatorGuo,Wenlei
dc.creatorZhang,Lele
dc.creatorZhao,Kongping
dc.creatorGe,Luan
dc.creatorLv,Xueshen
dc.creatorLiu,Weitang
dc.creatorWang,Jinxin
dc.date2017-01-01
dc.date.accessioned2019-04-24T21:20:29Z
dc.date.available2019-04-24T21:20:29Z
dc.identifierhttps://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-58392017000400311
dc.identifier.urihttp://revistaschilenas.uchile.cl/handle/2250/56309
dc.descriptionABSTRACT Redroot pigweed (Amaranthus retroflexus L.) is a troublesome weed infesting soybean (Glycine max [L.] Merr.) productions in China. One redroot pigweed population, collected from Heilongjiang (HLJ) Province, China, was suspected to be resistant to thifensulfuron-methyl and fomesafen. The other one redroot pigweed population, collected from Shandong (SD) Province, was susceptible. The study aimed to characterize the level of thifensulfuron-methyl and fomesafen resistance using HLJ population and identify the potential resistance mechanisms to thifensulfuron-methyl. The sensitivity to other herbicides with and without the same target site was also evaluated. Acetolactate synthase (ALS) gene sequencing revealed that Trp574Leu or Ala205Val amino acid substitution were present in the HLJ population. Whole-plant herbicide bioassays showed that, compared with SD population, HLJ population displayed high level of resistance to thifensulfuron-methyl and moderate resistance to fomesafen. The 50% growth reduction (GR50) value of thifensulfuron-methyl with malathion pretreatment was reduced by 23%, suggesting that both target-site resistance and non-target-site resistance mechanisms were present in thifensulfuron-methyl resistance of redroot pigweed. Cross-resistant patterns showed that the HLJ population evolved resistance to pyrithiobac-sodium, pyroxsulam, imazethapyr and fluoroglycofen, but susceptible to bentazone.
dc.formattext/html
dc.languageen
dc.publisherInstituto de Investigaciones Agropecuarias, INIA
dc.relation10.4067/S0718-58392017000400311
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceChilean journal of agricultural research v.77 n.4 2017
dc.subjectAcetolactate synthase
dc.subjectgene mutation
dc.subjectprotoporphyrinogen oxidase
dc.subjectmultiple resistance.
dc.titleMultiple resistance to thifensulfuron-methyl and fomesafen in redroot pigweed ( Amaranthus retroflexus L.) from China


This item appears in the following Collection(s)

Show simple item record