• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Instituto de Investigaciones Agropecuarias
  • Chilean Journal of Agricultural Research
  • View Item
  •   Home
  • Instituto de Investigaciones Agropecuarias
  • Chilean Journal of Agricultural Research
  • View Item

Application of artificial neural networks to frost detection in central Chile using the next day minimum air temperature forecast

Author
Fuentes,Marcel

Campos,Cristóbal

García-Loyola,Sebastián

Full text
https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-58392018000300327
Abstract
ABSTRACT Predicting future climatic events is one of the key issues in many fields, whether in scientific or industrial areas. An artificial neural network (ANN) model, based on a backpropagation type, was developed in this study to predict the minimum air temperature of the following day from meteorological data using air temperature, relative humidity, radiation, precipitation, and wind direction and speed to detect the occurrence of radiative frost events. The configuration of the next day ANN prediction system allows operating with low-power computing machines; it is able to generate early warnings that can lead to the development of effective strategies to reduce crop damage, lower quality, and losses in agricultural production. This paper presents a procedural approach to an ANN, which was trained, validated, and tested in 10 meteorological stations in central Chile for approximately 8 yr (2010-2017). The overall mean results were classified by a confusion matrix and showed good performance in predicting minimum temperature with a mean square error (MSE) of 2.99 °C for the network, 1.71 °C for training, 1.77 °C for validation, and 1.74 °C for the testing processes. Frost detection results had an appropriate 98% overall mean accuracy (ACC), 86% sensitivity (TPR), and 2% error rate (ER). Differences and errors in frost detection can be attributed to several factors that are mainly associated with the accuracy of the sensors meteorological stations, local climatic and geographic conditions, and the number of parameters that enter in the ANN training processes.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB