Green Function for a Two-Dimensional Discrete Laplace-Beltrami Operator
Author
Sushch, Volodymyr
Abstract
We study a discrete model of the Laplacian in ℝ2 that preserves the geometric structure of the original continual object. This means that, speaking of a discrete model, we do not mean just the direct replacement of differential operators by difference ones but also a discrete analog of the Riemannian structure. We consider this structure on the appropriate combinatorial analog of differential forms. Self-adjointness and boundness for a discrete Laplacian are proved. We define the Green function for this operator and also derive an explicit formula of the one.