dc.creator | Sushch, Volodymyr | |
dc.date | 2008-07-01 | |
dc.date.accessioned | 2019-05-03T12:36:41Z | |
dc.date.available | 2019-05-03T12:36:41Z | |
dc.identifier | http://revistas.ufro.cl/ojs/index.php/cubo/article/view/1515 | |
dc.identifier.uri | http://revistaschilenas.uchile.cl/handle/2250/84246 | |
dc.description | We study a discrete model of the Laplacian in ℝ2 that preserves the geometric structure of the original continual object. This means that, speaking of a discrete model, we do not mean just the direct replacement of differential operators by difference ones but also a discrete analog of the Riemannian structure. We consider this structure on the appropriate combinatorial analog of differential forms. Self-adjointness and boundness for a discrete Laplacian are proved. We define the Green function for this operator and also derive an explicit formula of the one. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad de La Frontera. Temuco, Chile. | en-US |
dc.relation | http://revistas.ufro.cl/ojs/index.php/cubo/article/view/1515/1369 | |
dc.source | CUBO, A Mathematical Journal; Vol. 10 Núm. 2 (2008): CUBO, A Mathematical Journal; 47–59 | es-ES |
dc.source | CUBO, A Mathematical Journal; Vol 10 No 2 (2008): CUBO, A Mathematical Journal; 47–59 | en-US |
dc.source | 0719-0646 | |
dc.source | 0716-7776 | |
dc.title | Green Function for a Two-Dimensional Discrete Laplace-Beltrami Operator | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |