Show simple item record

dc.creatorSushch, Volodymyr
dc.date2008-07-01
dc.date.accessioned2019-05-03T12:36:41Z
dc.date.available2019-05-03T12:36:41Z
dc.identifierhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/1515
dc.identifier.urihttp://revistaschilenas.uchile.cl/handle/2250/84246
dc.descriptionWe study a discrete model of the Laplacian in ℝ2 that preserves the geometric structure of the original continual object. This means that, speaking of a discrete model, we do not mean just the direct replacement of differential operators by difference ones but also a discrete analog of the Riemannian structure. We consider this structure on the appropriate combinatorial analog of differential forms. Self-adjointness and boundness for a discrete Laplacian are proved. We define the Green function for this operator and also derive an explicit formula of the one.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/1515/1369
dc.sourceCUBO, A Mathematical Journal; Vol. 10 Núm. 2 (2008): CUBO, A Mathematical Journal; 47–59es-ES
dc.sourceCUBO, A Mathematical Journal; Vol 10 No 2 (2008): CUBO, A Mathematical Journal; 47–59en-US
dc.source0719-0646
dc.source0716-7776
dc.titleGreen Function for a Two-Dimensional Discrete Laplace-Beltrami Operatoren-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record