Xylanolytic enzymes production by Aspergillus niger GS1 from solid-state fermentation on corn stover and their effect on ruminal digestibility
Author
Regalado,Carlos
Vázquez-Obregón,Immer
García-Almendárez,Blanca Estela
Domínguez-Domínguez,Jorge
Aguilera-Barreyro,Araceli
Amaro-Reyes,Aldo
Abstract
Hemicellulosic agricultural by-products such as corn stover (CS) are highly available materials which represent an opportunity to develop value added products. Native Aspergillus niger GS1 was used for solid-state fermentation (SSF) on alkali pre-treated CS (ACS) aimed to optimize xylanolytic enzymes production, and their effect on in vitro ruminal and true digestibility of ACS. Enzyme production was empirically modelled using a fractional factorial design 2(9-5), and the resulting significant factors were glucose, yeast extract and two mineral salts, which were arranged in a Draper-Lin optimization design at two levels. Predicted optimum xylanolytic activity of 33.6 U (mg protein)-1 was achieved at 48 hrs of SSF, and was validated by confirmatory experiments. ACS was incubated with a semipurified enzymatic extract (EE) showing a xylanolytic activity of 1600 U kg-1 dry ACS for 12 hrs before exposure to cow?s ruminal liquid for 72 hrs, which led to 5% and 10% increase of in vitro ruminal and true digestibility, respectively. CS is a readily available by-product in different regions which after alkaline treatment and partial hydrolysis with the EE, may be advantageously used as supplement for ruminant feed.