Sharp inequality of three point Gauss-Legendre quadrature rule
Author
Kashuri, Artion
Full text
https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/360510.22199/issn.0717-6279-2020-03-0039
Abstract
An interesting identity for 3-point Gauss-Legendre quadrature rule using functions that are n-times differentiable. By applying the established identity, a sharp inequality which gives an error bound for 3-point Gauss-Legendre quadrature rule and some generalizations are derived. At the end, an application in numerical integration is given.
Metadata
Show full item recordRelated items
Showing items related by title, author, creator and subject.
-
Hermite-Hadamard type fractional integral inequalities for products of two MT(r;g,m,φ)-preinvex functions
Kashuri, Artion; Liko, Rozana. Proyecciones (Antofagasta, On line); Vol 39 No 1 (2020); 219-242 -
Some new Ostrowski type fractional integral inequalities for generalized relative semi-(r; m, h)-preinvex mappings via Caputo k-fractional derivatives.
Kashuri, Artion; Liko, Rozana. Proyecciones. Journal of Mathematics; Vol 38 No 2 (2019); 363-394 -
Some refinements to Hölder’s inequality and applications
Akkouchi, Mohamed; Ighachane, Mohamed Amine. Proyecciones (Antofagasta, On line); Vol 39 No 1 (2020); 153-166