dc.creator | Lescure, Francois | es |
dc.date | 2012-06-20 | |
dc.date.accessioned | 2025-03-31T13:12:20Z | |
dc.date.available | 2025-03-31T13:12:20Z | |
dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1151 | |
dc.identifier | 10.4067/S0716-09172012000200005 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/250935 | |
dc.description | Let M be a complex manifold and F a OM-module with a g-holomorphic action where g is a complex Lie algebra (cf. [3]). We denote by H(g, F) the "total cohomology" as defined in [1] [2]. Then we prove that, for any ideal a c g,the module H* (a, F) viewed as a g/a-module, we have a spectral sequence which converges to H(g, F). | es |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Universidad Católica del Norte. | en |
dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1151/1134 | |
dc.rights | Copyright (c) 2012 Proyecciones. Journal of Mathematics | en |
dc.source | Proyecciones (Antofagasta, On line); Vol. 31 No. 2 (2012); 165-168 | en |
dc.source | Proyecciones. Revista de Matemática; Vol. 31 Núm. 2 (2012); 165-168 | es |
dc.source | 0717-6279 | |
dc.title | Hocshchild-Serre Statement for the total cohomoly | es |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |