• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Universidad Católica del Norte
  • Proyecciones: Journal of Mathematics
  • View Item
  •   Home
  • Universidad Católica del Norte
  • Proyecciones: Journal of Mathematics
  • View Item

About an existence theorem of the Henstock-Fourier transform

Author
Mendoza Torres, Francisco Javier

Escamilla Reyna, Juan Alberto

Raggi Cárdenas, María Guadalupe

Full text
https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1409
10.4067/S0716-09172008000300006
Abstract
We show that if f is lying on the intersection of the space of Henstock-Kurzweil integrable functions and the space of the bounded variation functions in the neighborhood of ± ∞, then its Fourier Transform exists in all R. This result is more general than the classical result which enunciates that if f is Lebesgue integrable, then the Fourier Transform of f exists in all R, because we also have proved that there are functions which belong to the intersection of the space of the Henstock-Kurzweil integrable functions and the space of the bounded variation functions which are not Lebesgue integrable.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB