Show simple item record

dc.creatorMendoza Torres, Francisco Javieres
dc.creatorEscamilla Reyna, Juan Albertoes
dc.creatorRaggi Cárdenas, María Guadalupees
dc.date2017-04-06
dc.date.accessioned2025-10-06T15:05:06Z
dc.date.available2025-10-06T15:05:06Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1409
dc.identifier10.4067/S0716-09172008000300006
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/255534
dc.descriptionWe show that if f is lying on the intersection of the space of Henstock-Kurzweil integrable functions and the space of the bounded variation functions in the neighborhood of ± ∞, then its Fourier Transform exists in all R. This result is more general than the classical result which enunciates that if f is Lebesgue integrable, then the Fourier Transform of f exists in all R, because we also have proved that there are functions which belong to the intersection of the space of the Henstock-Kurzweil integrable functions and the space of the bounded variation functions which are not Lebesgue integrable.es
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1409/1205
dc.rightsCopyright (c) 2008 Proyecciones. Journal of Mathematicsen
dc.sourceProyecciones (Antofagasta); Vol. 27 No. 3 (2008); 307-318en
dc.sourceProyecciones. Revista de Matemática; Vol. 27 Núm. 3 (2008); 307-318es
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2008
dc.titleAbout an existence theorem of the Henstock-Fourier transformes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record